Revisão de pesquisas em design de origami na área médica

Samanta Aline Teixeira, Galdenoro Botura Junior, Thaís Regina Ueno Yamada

Resumo


O origami é uma arte japonesa que consiste em modificar uma folha plana de papel em figuras bi ou tridimensionais apenas com dobras. No momento atual essa arte está sendo incorporada em diversas tecnologias na área do design de produtos, arquitetura, moda, engenharia espacial e ciência de materiais, mas é na área médica que o origami está ganhando especial atenção dos pesquisadores, pois seus métodos de design têm apresentado interessantes inovações em soluções de formas e estruturas. O presente artigo é uma revisão sobre design de origami aplicado à área médica, analisando as características de algumas pesquisas aplicadas, como os tipos de materiais, processos de fabricação, as necessidades e demandas de cada área da saúde, e quais são as vantagens estratégicas das dobraduras em termos de melhorias nos custos, processos de manufatura, usabilidade, e sustentabilidade.


Palavras-chave


Design de origami, Medicina, Multidisciplinaridade, Inovação, Métodos em Design

Texto completo:

PDF

Referências


AVILA, A. et al. Origami fold states: Concept and design tool. Mechanical Sciences, v. 10, n. 1, p. 91–105, 2019. DOI 10.5194/ms-10-91-2019. Disponível em: https://www.mech-sci.net/10/91/2019/. Acesso em: 13 jan. 2020.

BASSIK, N. et al. Enzymatically Triggered Actuation of Miniaturized Tools. Journal of the American Chemical Society, v. 132, n. 46, p. 16314–16317, 2010. DOI 10.1021/ja106218s. Disponível em: https://pubs.acs.org/doi/10.1021/ja106218s. Acesso em: 23 jul. 2020.

BECKER, M. Graus de Liberdade em Cadeias Cinemáticas. [S. I.: s. n.], 2014. Disponível em: https://docplayer.com.br/85078910-Sem-aula-2-graus-de-liberdade-em-cadeias-cinematicas-prof-dr-marcelo-becker.html. Acesso em: 11 jun. 2020.

CALLISTER JUNIOR, W. D.; RETHWISCH, D. G. Materials Science and Engineering - An Introduction. 8. ed. Danvers: John Wiley & Sons, 2010.

CHEN, Y. et al. Intra-cardiac MR imaging & MR-tracking catheter for improved MR-guided EP. Journal of Cardiovascular Magnetic Resonance, v. 17, n. S1, p. 1–2, 2015. DOI 10.1186/1532-429x-17-s1-p237. Disponível em: https://jcmr-online.biomedcentral.com/articles/10.1186/1532-429X-17-S1-P237. Acesso em: 23 jul. 2020.

CHEN, Y.; PENG, R.; YOU, Z. Origami of thick panels. Science, v. 349, n. 6246, p. 396–400, 2015. DOI 10.1126/science.aab2870. Disponível em: https://science.sciencemag.org/content/349/6246/396. Acesso em: 21 jul. 2020.

DUREISSEIX, D. An overview of mechanisms and patterns with origami. International Journal of Space Structures, v. 27, n. 1, p. 1–14, 2012. DOI 10.1260/0266-3511.27.1.1. Disponível em: https://journals.sagepub.com/doi/10.1260/0266-3511.27.1.1. Acesso em: 23 jul. 2020.

EDMONDSON, B. J. et al. Oriceps: Origami-Inspired Forceps. Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Anais...Snowbird: The American Society of Mechanical Engineers, 2013. DOI 10.1115/SMASIS2013-3299. Disponível em: https://asmedigitalcollection.asme.org/SMASIS/proceedings-abstract/SMASIS2013/56031/V001T01A027/284047. Acesso em: 21 jul. 2020.

FRANCIS, K. C. et al. From crease pattern to product: considerations to engineering origami-adapted designs. Proceedings of ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. Anais...Buffalo: The American Society of Mechanical Engineers, 2014. Disponível em: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2090926. Acesso em: 21 jul. 2020.

GJERDE, E. Origami Tessellations: Awe-Inspiring Geometric Designs. Massachusetts: Taylor & Francis Inc, 2008.

GREENBERG, H. C. et al. Identifying links between origami and compliant mechanisms. Mechanical Sciences, v. 2, n. 2, p. 217–225, 2011. DOI 10.5194/ms-2-217-2011. Disponível em: https://ms.copernicus.org/articles/2/217/2011/ms-2-217-2011.html. Acesso em: 23 jul. 2020.

IWAKI, M. et al. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads. Nature Communications, v. 7, p. 1–10, 2016. DOI 10.1038/ncomms13715. Disponível em: http://dx.doi.org/10.1038/ncomms13715. Acesso em: 23 jul. 2020.

JOHNSON, M. et al. Fabricating biomedical origami: a state-of-the-art review. International Journal of Computer Assisted Radiology and Surgery, v. 12, n. 11, p. 2023–2032, 2017. DOI 10.1007/s11548-017-1545-1. Disponível em: https://link.springer.com/article/10.1007/s11548-017-1545-1. Acesso em: 23 jul. 2020.

KURIBAYASHI, K. et al. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Materials Science and Engineering A, v. 419, p. 131–137, 2006. DOI 10.1016/j.msea.2005.12.016. Disponível em: https://www.sciencedirect.com/science/article/pii/S0921509305014930. Acesso em: 23 jul. 2020.

KUZUYA, A. et al. Nanomechanical DNA origami “single-molecule beacons” directly imaged by atomic force microscopy. Nature Communications, v. 2, n. 1, p. 448–449, 2011. DOI 10.1038/ncomms1452. Disponível em: http://dx.doi.org/10.1038/ncomms1452. Acesso em: 23 jul. 2020.

LI, S. et al. Fluid-driven origami-inspired artificial muscles. Proceedings of the National Academy of Sciences of the United States of America, v. 114, n. 50, p. 13132–13137, 2017. DOI 10.1073/pnas.1713450114. Disponível em: https://www.pnas.org/content/114/50/13132. Acesso em: 23 jul. 2020.

MEHNER, P. J. et al. Toward engineering biological tissues by directed assembly and origami folding. American Mathematical Society AMS Non-Series Monographs, v. 95.2, p. 545–555, 2015. DOI 10.1090/mbk/095.2/17. Disponível em: https://pdfs.semanticscholar.org/91ad/7666ddc2ac91c076fe9c130b51549f2ff17f.pdf. Acesso em: 23 jul. 2020.

MERALI, Z. “Origami engineer” flexes to create stronger, more agile materials. Science, v. 332, n. 6036, p. 1376–1377, 2011. DOI 10.1126/science.332.6036.1376. Disponível em: https://science.sciencemag.org/content/332/6036/1376/tab-article-info. Acesso em: 23 jul. 2020.

MIYASHITA, S. et al. Self-folding miniature elastic electric devices. Smart Materials and Structures, v. 23, n. 9, 2014. DOI 10.1088/0964-1726/23/9/094005. Disponível em: https://iopscience.iop.org/article/10.1088/0964-1726/23/9/094005/meta. Acesso em: 23 jul. 2020.

MIYASHITA, S. et al. An Untethered Miniature Origami Robot that Self-folds, Walks, Swims, and Degrades. IEEE International Conference on Robotics and Automation (ICRA). Anais...Seattle: Institute of Electrical and Electronics Engineers (IEEE), 2015 DOI 10.1109/ICRA.2015.7139386. Disponível em: https://ieeexplore.ieee.org/document/7139386. Acesso em: 23 jul. 2020.

MIYASHITA, S. et al. Ingestible, controllable, and degradable origami robot for patching stomach wounds. Proceedings - IEEE International Conference on Robotics and Automation (ICRA). Anais...Estocolmo: IEEE Institute of Electrical and Electronics Engineers, 2016. DOI 10.1109/ICRA.2016.7487222. Disponível em: https://ieeexplore.ieee.org/document/7487222. Acesso em: 23 jul. 2020.

MORGAN, M. R. et al. Towards developing product applications of thick origami using the offset panel technique. Mechanical Sciences, v. 7, n. 1, p. 69–77, 2016. DOI 10.5194/ms-7-69-2016. Disponível em: https://ms.copernicus.org/articles/7/69/2016/. Acesso em: 23 jul. 2020.

NELSON, T. G. et al. Facilitating deployable mechanisms and structures via developable lamina emergent arrays. Journal of Mechanisms and Robotics, v. 8, n. 3, 2016. DOI 10.1115/1.4031901. Disponível em: https://asmedigitalcollection.asme.org/mechanismsrobotics/article-abstract/8/3/031006/441834/Facilitating-Deployable-Mechanisms-and-Structures?redirectedFrom=fulltext. Acesso em: 23 jul. 2020.

ONAL, C. D.; WOOD, R. J.; RUS, D. An Origami-Inspired Approach to Worm Robots. IEEE/ASME Transactions on Mechatronics, v. 18, n. 2, p. 430–438, 2013. DOI 10.1109/TMECH.2012.2210239. Disponível em: https://ieeexplore.ieee.org/document/6266749. Acesso em: 23 jul. 2020.

ROTHEMUND, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature, v. 440, n. 7082, p. 297–302, 2006. DOI 10.1038/nature04586. Disponível em: https://www.nature.com/articles/nature04586. Acesso em: 23 jul. 2020.

SCHMIDT, E. J. et al. Intra-Cardiac MRI Catheter for EP Ablation Monitoring : Preliminary Studies. Proceedings of the 19th annual meeting of International Society for Magnetic Resonance in Medicine (ISMRM). Anais...Montreal: 2011. Disponível em: https://cds.ismrm.org/protected/11MProceedings/files/3741.pdf. Acesso em: 23 jul. 2020.

TAYLOR, A. et al. Intracardiac magnetic resonance imaging catheter with origami deployable mechanisms. Journal of Medical Devices, v. 10, n. 2, p. 2–3, 2016. DOI 10.1115/1.4033151. Disponível em: https://augusta.pure.elsevier.com/en/publications/intracardiac-magnetic-resonance-imaging-catheter-with-origami-dep. Acesso em: 23 jul. 2020.

TURNER, N.; GOODWINE, B.; SEN, M. A review of origami applications in mechanical engineering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, v. 230, n. 14, p. 2345–2362, 2016. DOI 10.1177/0954406215597713. Disponível em: https://journals.sagepub.com/doi/10.1177/0954406215597713. Acesso em: 23 jul. 2020.

VENEZIANO, R. et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nature Nanotechnology, p. 2020.02.16.951475, 2020. DOI 10.1038/s41565-020-0719-0. Disponível em: https://www.nature.com/articles/s41565-020-0719-0. Acesso em: 23 jul. 2020.

YAMADA, T. R. U. Estruturas flat foldable em Bambu Laminado Colado baseadas em técnicas de dobra e corte do origami e do kirigami. 2016. 224p. Tese (Doutorado em Design) – Universidade Estadual Paulista, Bauru, 2016.

ZHAO, R. et al. Kirigami enhances film adhesion. Soft Matter, v. 14, n. 13, p. 2515–2525, 2018. DOI 10.1039/c7sm02338c. Disponível em: http://dx.doi.org/10.1039/c7sm02338c. Acesso em: 23 jul. 2020.

ZHU, S.; LI, T. Hydrogenation-Assisted Graphene Origami and Its Application in Programmable Molecular Mass Uptake, Storage, and Release. ACS Nano, v. 8, n. 3, p. 2864–2872, 2014. DOI 10.1021/nn500025t. Disponível em: https://pubs.acs.org/doi/10.1021/nn500025t. Acesso em: 23 jul. 2020.




DOI: https://doi.org/10.35522/eed.v28i3.1019

Apontamentos

  • Não há apontamentos.


Direitos autorais 2020 Samanta Aline Teixeira, Galdenoro Botura Junior, Thaís Regina Ueno Yamada

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição - NãoComercial 4.0 Internacional.

Revista Estudos em Design, Rio de Janeiro, RJ, Brasil, ISSN Impresso: 0104-4249, ISSN Eletrônico: 1983-196X

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.